Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
NA (Ed.)Abstract. Measurements of dissolved organic carbon (DOC), nitrogen (DON), and phosphorus (DOP) concentrations are used to characterize the dissolved organic matter (DOM) pool and are important components of biogeochemical cycling in the coastal ocean. Here, we present the first edition of a global database (CoastDOM v1; available at https://doi.org/10.1594/PANGAEA.964012, Lønborg et al., 2023) compiling previously published and unpublished measurements of DOC, DON, and DOP in coastal waters. These data are complemented by hydrographic data such as temperature and salinity and, to the extent possible, other biogeochemical variables (e.g. chlorophyll a, inorganic nutrients) and the inorganic carbon system (e.g. dissolved inorganic carbon and total alkalinity). Overall, CoastDOM v1 includes observations of concentrations from all continents. However, most data were collected in the Northern Hemisphere, with a clear gap in DOM measurements from the Southern Hemisphere. The data included were collected from 1978 to 2022 and consist of 62 338 data points for DOC, 20 356 for DON, and 13 533 for DOP. The number of measurements decreases progressively in the sequence DOC > DON > DOP, reflecting both differences in the maturity of the analytical methods and the greater focus on carbon cycling by the aquatic science community. The global database shows that the average DOC concentration in coastal waters (average ± standard deviation (SD): 182±314 µmol C L−1; median: 103 µmol C L−1) is 13-fold higher than the average coastal DON concentration (13.6±30.4 µmol N L−1; median: 8.0 µmol N L−1), which is itself 39-fold higher than the average coastal DOP concentration (0.34±1.11 µmol P L−1; median: 0.18 µmol P L−1). This dataset will be useful for identifying global spatial and temporal patterns in DOM and will help facilitate the reuse of DOC, DON, and DOP data in studies aimed at better characterizing local biogeochemical processes; closing nutrient budgets; estimating carbon, nitrogen, and phosphorous pools; and establishing a baseline for modelling future changes in coastal waters.more » « less
-
Abstract In the oligotrophic ocean where inorganic phosphate (Pi) concentrations are low, microorganisms supplement their nutrient requirements with phosphorus (P) extracted from dissolved organic matter (DOM). Most P in DOM is bound as phosphate esters, which are hydrolyzed by phosphoesterases to Pi. However, a large fraction of DOM‐P occurs as phosphonates, reduced organophosphorus compounds with a CP bond that do not yield Pithrough simple ester hydrolysis alone. Phosphonates require an additional step that cleaves the CP bond and oxidizes P(III) to P(V) to yield Pi. Most phosphonates are metabolized by the C‐P lyase pathway, which cleaves CP bonds and oxidizes phosphonates to Pi, enabling microbial assimilation. While the activity of common phosphoesterases such as alkaline phosphatase and phosphodiesterase can be measured by a fluorescent assay, a comparable method to assess C‐P lyase activity (CLA) in natural water samples does not exist. To address this, we synthesized a dansyl‐labeled phosphonate compound, and measured its hydrolysis by C‐P lyase using high performance liquid chromatography. We found that laboratory cultures of marine bacteria expressing the C‐P lyase pathway are able to hydrolyze the dansyl phosphonate, while bacteria expressing other phosphonate degradation pathways do not. Finally, we performed several field tests of the assay to measure water column profiles of CLA at Sta. ALOHA in the North Pacific Subtropical Gyre. Activity was elevated near the deep chlorophyll maximum suggesting high levels of phosphonate degradation in that region.more » « less
An official website of the United States government
